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in a variety of sensory cortices reaches the PFC
via the thalamus (31). Supporting this idea, PFC
engram cells receive monosynaptic input from
both the medial-dorsal and anteromedial thala-
mus (fig. S5).
Our finding of the lasting hippocampal engrams

(Fig. 3Q) is consistent with multiple trace the-
ory (5, 11). However, at the postconsolidation
stage, the hippocampal engrams were not ac-
tivatable by natural recall cues, but rather by
optogenetic stimulation. A similar state of hip-
pocampal engrams has previously been observed
in anisomycin-induced amnesia (24) and mouse
models of early Alzheimer’s disease (26), and
the early (day 2) PFC engram cells showed a sim-
ilar property (Figs. 1S and 2C). Although we
did not determine how long after encoding
this “silent state” of the hippocampal engram
lasts, we speculate that the hippocampal en-
gram eventually loses the original memory in-
formation (29, 32, 33). Alternatively, the silent
engram cells may still participate in the suc-
cessful remote recall of discrete episodic de-
tails (5, 11).
As in previous studies (18, 20, 29), we observed

that training resulted in widespread neuronal
activation in the neocortex, including the ACC
and RSC. However, whereas the activation of
PFC neurons is crucial for formation of remote
memory, MEC-Va input into the cACC or RSC is
dispensable for this process. For remote memo-
ry, the PFC may thus have a distinctive role in
integrating multiple sensory information stored
in various cortical areas (11). Last, our data show
that the remote memory expressed by the PFC
engram is conditioned-context specific, suggest-
ing that it is episodic-like.
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The applied value of public
investments in biomedical research
Danielle Li,1* Pierre Azoulay,2,3 Bhaven N. Sampat3,4

Scientists and policy-makers have long argued that public investments in science have
practical applications. Using data on patents linked to U.S. National Institutes of Health
(NIH) grants over a 27-year period, we provide a large-scale accounting of linkages between
public research investments and subsequent patenting. We find that about 10% of NIH
grants generate a patent directly but 30% generate articles that are subsequently cited by
patents. Although policy-makers often focus on direct patenting by academic scientists,
the bulk of the effect of NIH research on patenting appears to be indirect. We also find
no systematic relationship between the “basic” versus “applied” research focus of a grant
and its propensity to be cited by a patent.

T
he claim that investments in publicly funded
science ultimately have practical application
is perhaps the central assumption in postwar
science policy (1). Although private-sector
research and development (R&D) invest-

ments can be more easily linked to a firm’s own
marketed products, knowledge generated by
public investments in science is often meant to
be freely accessible to multiple other parties,
making it difficult to keep track of whether and
by whom this knowledge is used. Moreover, pub-
licly funded research may have applications far
from its original area, many years or even decades
later, making the links between funding and
commercial use difficult to predict (2). When
public investments in science lay a foundation
for innovation by others—with heterogeneous
time lags and spillovers across topics—how can
we credit these investments for contributing to
the development of these innovations?
We analyze the output of research grants

awarded by the U.S. National Institutes of Health

(NIH), the world’s largest single funder of re-
search in the life sciences, with an annual bud-
get of over US$30 billion (appendix A). NIH
provides support for one-third of biomedical
R&D in the United States overall, as well as the
majority of funding for so-called “basic” biomed-
ical research (3). Using data on life-science pat-
ents (including drugs, devices, and other medical
technologies) linked to NIH grants over a 27-year
period, we provide a method for large-scale ac-
counting of linkages between public research
investments and commercial applications. Re-
cognizing that some patents are more valuable
than others, we also examine linkages between
NIH grants and patents associated with mar-
keted drugs (appendix B). Although many pat-
ents are associated with development efforts
that ultimately failed, patents on drugs approved
by the U.S. Food and Drug Administration (FDA)
indicate inventions that firms found valuable
enough to marshal through the costly testing
and launch process and that the FDA views as
safe and effective.
There are two basic ways through which NIH-

funded research may affect patenting and drug
development. First, NIH-funded scientists may
themselves produce patents. The 1980 Bayh-
Dole Act created incentives for these researchers
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FDA Approved Fig. 1. Grant-patent lags, direct versus indi-
rect patenting. (A and B) Based on a sample of
365,380 NIH grants awarded between the years
1980 and 2007. A grant is directly linked to a patent
if the patent contains a government interest state-
ment explicitly referencing the grant. A grant is
indirectly linked to a patent if a publication acknowl-
edges the grant within 5 years of the start of a
particular funding period for the grant (covering
the fiscal year in which it is first disbursed up until
the year the funding runs out, typically 3 to 5 years),
and a patent cites this publication as prior art. For
each year after approval, the percentage of linked
patents is calculated using only grants that have
reached that age.
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Fig. 2. Grant-patent lags, by basic or applied
orientation. (A and B) A grant is designated
disease-targeted if its abstract can be mapped
to at least one MeSH term corresponding to a dis-
ease through the Medical Text Indexer. (C and D) A
grant is designated patient-oriented if its abstract
can be mapped to the MeSH term for humans
through theMedical Text Indexer. (E and F) A grant
is designed as RFA if it is submitted as part of a
request for applications. Bayh-Dole patents that
cannot be linked to a grant through a publication
are excluded from the analysis. See appendix F for
further details on these classifications.
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and their institutions, typically universities, aca-
demic medical centers, and nonprofit research
institutes, to patent their discoveries so that they
could be licensed to private firms. The act re-
quired institutions to report patents resulting
from public funding to the government. This re-
porting requirement enables us to identify patents
that are directly produced as a result of NIH
funding (appendix C). Public funding for bio-
medical research, however, is typically intended
to have an effect beyond the direct production
of patents. To capture this broader effect, our
second measure identifies private-sector patents
that cite NIH-funded research. We collect all
scientific publications that are listed in the “Ref-
erences Cited” section of private-sector patents,
determine which articles result from NIH fund-
ing, and identify the grant numbers for those
that do (appendices C and D). Scientific refer-
ences generated during the patent application
process are part of the “prior art” against which
patent examiners judge the patentability of in-
ventions. References to prior articles are thus
similar to references to prior patents, which have
been widely used to examine the effect of science.
Patent-article references, however, have two ma-
jor advantages: (i) publications rather than pat-
ents are the primary output of academic research,
and (ii) unlike citations to other patents, citations
to published articles are much more likely to
come from patent applicants themselves rather
than from patent examiners (4). Although cita-
tions to articles contained in patent documents

are not perfect measures of knowledge flows,
validation exercises against survey data suggest
that patent-article citations provide better signals
of the intellectual influence of public science
than previously used measures (5).We are able
to identify patents that build on NIH-funded
research without making a priori assumptions
about the diffusion of scientific knowledge over
time and across disease areas (e.g., whether grant
funding by the National Cancer Institute leads to
research cited by patents on AIDS treatments).
Appendix E provides details on the process
followed to pair life science patents with the
individual PubMed records they reference.
Our sample consists of 365,380 grants funded

between 1980 and 2007, almost all NIH grants
over this period. Nearly half of these (164,378)
are R01-equivalent grants, large project-based
renewable grants that form the foundation of
NIH’s extramural spending. A total of 30,829
(8.4%) of these grants are directly acknowledged
by patents, leading to 17,093 “Bayh-Dole” patents
assigned primarily to universities and hospitals.
A much larger set of grants, 112,408 (31%), pro-
duces research that is cited by 81,462 private-
sector patents in aggregate (note that these two
channels are not mutually exclusive). These in-
directly linked patents demonstrate the addi-
tional reach that publicly funded science can have
by building a foundation for private-sector R&D.
Figure 1A describes the lag times between

NIH funding and follow-on patenting both via
direct acknowledgements and indirect citation

linkages. At a given point t on the x axis, we
plot the proportion of t–year-old grants that
have been linked to a patent. This curve is gen-
erally increasing because a grant’s likelihood
of being linked to a patent increases with age.
In some cases, these curves turn downward in
later years because of cohort effects; e.g., the pro-
portion of grants linked to patents after 25 years
does not include grants less than 25 years old
(because these figures conflate time and cohort
effects, we report a survival analysis in appen-
dix G that separately controls for grant cohort).
The difference in the number of patents we
are able to link to public science funding via
these two different approaches is immediately
apparent.
Our results so far indicate that, although Bayh-

Dole and other policies emphasize patenting by
academic researchers themselves, the effect of
NIH research through traditional channels—
private patents citing publications from NIH
grants—is almost four times greater. Moving
forward, we adopt this as our preferred measure
of patenting associated with NIH funding.
We look separately at patents associated with

drug approvals, using data from the FDA. In
general, there are far fewer such patents—only
4414 of the life science patents in our sample are
associated with FDA-approved drugs—meaning
that a smaller proportion of NIH-funded grants
will be linked to such patents. Less than 1% of
NIH grants are directly acknowledged by a
patent associated with a marketed drug (Fig.
1B), but 5% of grants result in a publication that
is cited by a patent associated with the marketed
drug. Here again, the indirect effect dominates
the effect via the direct Bayh-Dole channel.
The question of whether more “basic” or

“applied” grants are ultimately more valuable
for progress is an old one in science policy (1, 6).
One complication is that there is no consensus
on the definitions and distinctions between the
two (7, 8). “Basic” research has been variously
defined by whether it seeks general or specific
knowledge (9), by the institutional environment
where it takes place and the norms regarding
dissemination (10), by whether it is undertaken for
its own sake or with some application in mind (7),
and by whether or not it is targeted to a specific
program or mission (6), among other ways.
Rather than try to resolve this debate, we ex-

amine four different dimensions that have been
of interest to medical research policy-makers:
whether the research is disease-oriented, wheth-
er it is focused on patients (6, 11), and whether
it is solicited by the funder or is investigator-
initiated (12); for the subset of grants that are
not disease-oriented, we also examine the com-
plexity of the model organism studied (13). Except
for the solicited versus investigator-initiated dis-
tinction, all the “basicness” measures rely on a
semantic mapping, using a natural language
processing tool (the Medical Text Indexer), be-
tween funded grant abstracts and Medical Sub-
ject Heading (MeSH) keywords, the controlled
vocabulary maintained by the National Library
of Medicine (appendix F).
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A grant is said to be disease-oriented if its
abstract can be mapped to at least one MeSH
term corresponding to a disease (i.e., the MeSH
code starts with the letter C). By this measure,
183,517 grants (50% of our sample) are disease-
oriented.
Distinguishing patient-oriented grants from

other projects is straightforward, because the
MeSH controlled vocabulary includes a term
for humans. Patient-oriented grants defined
in this way include (but are not limited to) re-
search that uses human subjects. Using this
measure, 177,692 grants (49% of our sample) are
patient-oriented.
Whether the research was solicited, via a re-

quest for applications (RFA), is based on NIH
administrative data. RFAs (24% of our sample)
are typically used to direct research at particular
diseases or problems and thus are more likely to
represent applied work.
We use MeSH terms to classify NIH grants by

the complexity of the model organism they pro-
pose to study. Although admittedly crude, this
taxonomy captures the idea that scientists are
more likely to bear the financial and logistical
costs of working with higher-order animal mod-
els when conducting research intended to be
more applicable to humans. In contrast, simple
organisms are often chosen to elucidate funda-
mental biological phenomena without consid-
eration of therapeutic usefulness (14).
For this classification, we restrict our sample

to grants that are not disease-oriented, based on
the first measure above, to eliminate clinical or
translational research that happens to study the
effect of viruses or bacteria. We focus on grants
that mention at least one organism in the ab-
stract and take into account the natural hier-
archy of model organisms by grouping them
into coherent nonoverlapping sets: viruses, pro-
karyotes, unicellular eukaryotes, multicellular
eukaryotes, invertebrates, vertebrates, rodents,
other mammals, primates, and finally humans.
When an abstract can be mapped to two or more
levels of this hierarchy, we assign the grant to
the higher-order organism (appendix F).
Grants targeting diseases are more likely to

produce research that is cited by a patent, but
this difference is small: 35% of disease-oriented
grants versus 30% of non–disease-oriented grants
(Fig. 2A). When we examine grants linked to
patents on FDA-approved drugs, we find that
non–disease-targeted grants yield a similar num-
ber of high-value patents (Fig. 2B). The difference
in these curves suggests that although non–
disease-oriented research may take more time
to yield drug-related patents, its value levels off
less slowly over time.
Non–patient-oriented research yields patents

at virtually identical rates to patient-oriented re-
search (Fig. 2C). Non–patient-oriented research
appears to continue accruing patents associated
with FDA drugs even after this levels off for
patient-oriented research (Fig. 2D). Non–RFA-
solicited research, more likely to be basic, pro-
duces patent output similar to RFA-solicited
research (Fig. 2E), although this time we find

slightly more FDA-approved drugs for the set
of RFA-solicited grants (Fig. 2F).
Even non–disease-oriented research on simple

organisms is almost as likely to produce research
that is linked to patents as research on “higher-
order” organisms (Fig. 3). Taken together, Figs. 2
and 3 suggest that, based on our measures, basic
and applied grants are quite similar in their
linkages to commercial patenting.
Our research builds on and extends previ-

ous work in several ways. Although a consid-
erable body of research has examined academic
patenting linked to public research (15), and
some authors have done so at the grant level
(16), ours compares the relative magnitude of
patenting through direct and indirect channels
using individual grant data. Although Sampat
and Lichtenberg (17) examined the relative im-
portance of these two channels for marketed
drugs, their analysis was retrospective, whereas
ours is prospective. Other papers (18) that take
a prospective approach only consider one of the
two channels, and only for a subset of NIH grants.
The paper also adds to a long line of previous
bibliometric research (19) not only by linking
patents to scientific articles but also by linking
the articles back to funding sources and by at-
tempting to categorize these grants by different
measures of “basicness.”
Although our analysis is a large-scale eval-

uation of different types of linkages between
NIH research and private patenting, there are
important limitations. There may be underre-
porting of Bayh-Dole patents to the federal gov-
ernment by academic institutions, which would
understate the importance of the direct linkages
(20). Measuring indirect linkages through patents
citing articles is also imperfect. Applicants may
have incentives to overcite known prior art (21),
and the extent to which they search for prior art
may vary by invention importance (22). Citations
are made to satisfy legal criteria and may not
necessarily reflect strong intellectual influences.
On the other hand, our approach may underesti-
mate linkages between NIH funding and patent-
ing because not all intellectual influences are
embodied in articles—e.g., the effects of NIH
training. While patent-paper references improve
on previous measures of knowledge flows (see
above and the supplementary materials), more
work is needed to understand potential noise or
biases in these measures. Although we look only
at first-generation citations, some grants may
generate articles that are not cited by patents
but are cited by other articles that in turn are
cited by patents. This would lead us to under-
estimate links between NIH funding and patents.
Finally, our measures of “basicness” only capture,
imperfectly, some of the relevant dimensions
in the age-old debates regarding basic versus
applied research.
Despite these limitations, we provide several

new stylized facts. About a third of NIH grants
generate research that is cited by commercial
patents. This is much greater than the share of
grants directly yielding patents (less than 10%),
even though policy-makers often focus on this

easier-to-grasp metric to capture the near-term
economic returns to public funding of biomed-
ical R&D (23).
There is no obvious relationship between “basic-

ness” and likelihood of being cited by a patent.
One interpretation of this is that “basic” research
is nearly as productive as “applied” research, which
may be surprising to those who question its value
(24). On the other hand, we find little evidence for
claims that basic research is substantially more
impactful over the period we study (1, 25). Our
results are consistent with arguments that the
basic/applied distinctions may not be so useful
in thinking about what types of research funding
is more productive.

REFERENCES AND NOTES

1. V. Bush, Science: The Endless Frontier (U.S. Government
Printing Office, Washington, DC, 1945).

2. H. Varmus, The Art and Politics of Science (W. W. Norton &
Company, 2009).

3. H. Moses 3rd, E. R. Dorsey, D. H. M. Matheson, S. O. Thier,
JAMA 294, 1333–1342 (2005).

4. M. A. Lemley, B. Sampat, Rev. Econ. Stat. 94, 817–827 (2012).
5. M. Roach, W. M. Cohen, Manage. Sci. 59, 504–525 (2013).
6. J. H. Comroe Jr., R. D. Dripps, Science 192, 105–111 (1976).
7. D. Stokes, Pasteur’s Quadrant: Basic Science and Technological

Innovation (Brookings Institution Press, Washington, DC, 1997).
8. J. H. Marburger 3rd, Science 308, 1087 (2005).
9. K. Pavitt, Res. Policy 20, 109–119 (1991).
10. D. Partha, P. A. David, Res. Policy 23, 487–521 (1994).
11. G. L. Westbrook, “Basic Research Considerations for NINDS:

Analysis and Recommendations” (NIH, 2009); www.ninds.nih.gov/
sites/default/files/basic_module_1.pdf.

12. L. E. Rosenberg, “Scientific Opportunities and Public Needs:
Improving Priority Setting and Public Input at the National
Institutes of Health” (Report of the Committee on the NIH
Research Priority-Setting Process, Institute of Medicine,
Washington, DC, 1998).

13. S. Fields, M. Johnston, Science 307, 1885–1886 (2005).
14. Brown (26) provides an illustration of this point in his

case study of research on the tiny hermaphrodite worm
Caenorhabditis elegans.

15. A. J. Stevens et al., N. Engl. J. Med. 364, 535–541 (2011).
16. M. J. Kalutkiewicz, R. L. Ehman, Nat. Biotechnol. 32, 536–537

(2014).
17. B. N. Sampat, F. R. Lichtenberg, Health Aff. (Millwood) 30,

332–339 (2011).
18. B. N. Sampat, H. A. Pincus, Clin. Transl. Sci. 8, 759–763

(2015).
19. F. Narin, K. S. Hamilton, D. Olivastro, Res. Policy 26, 317–330

(1997).
20. A. K. Rai, B. N. Sampat, Nat. Biotechnol. 30, 953–956 (2012).
21. C. A. Cotropia, M. A. Lemley, B. Sampat, Res. Policy 42,

844–854 (2013).
22. B. N. Sampat, J. Law Econ. 53, 399–416 (2010).
23. D. C. Mowery, B. N. Sampat, in Essays in Honor of Edwin

Mansfield: The Economics of R&D, Innovation, and
Technological Change, A. N. Link, F. M. Scherer, Eds. (Springer,
New York, 2005), pp. 233–245.

24. C. Macilwain, Nature 465, 682–684 (2010).
25. M. Trajtenberg, R. M. Henderson, A. B. Jaffe, Econ. Innov. New

Technol. 5, 19–50 (1997).
26. A. Brown, In the Beginning Was the Worm: Finding the

Secrets of Life in a Tiny Hermaphrodite (Columbia Univ. Press,
New York, 2003).

ACKNOWLEDGMENTS

P.A. acknowledges the financial support of the National Science
Foundation through its Science of Science and Innovation Policy
(SciSIP) Program (award SBE-1460344).

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/356/6333/78/suppl/DC1
Appendices A to G
References (27–57)

28 September 2016; accepted 10 March 2017
10.1126/science.aal0010

SCIENCE sciencemag.org 7 APRIL 2017 • VOL 356 ISSUE 6333 81

RESEARCH | REPORTS



www.manaraa.com

Copyright 2017 American Association for the Advancement of Science. All rights reserved.


